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Waste-to-Energy (WTE) in the U.S.

 ~13% of all MSW is combusted for energy.
 ~80 operating facilities accepting ~95,000 tons per day.
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Solid
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The WTE Process Model

Material Input

User Inputs

» Waste composition

» \Waste properties

« Combustion and air pollution
control technology

* Equipment cost and
performance
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The Model Allows WTE Performance to
Vary with Waste Composition

* Physical and chemical (material) properties differ
between waste fractions (e.g., paper, plastic)

« Materials in the waste combusted affect facility electricity
generation and stack emissions

« SWOLF allows waste compositions to vary temporally in
year 5 year increments
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Model Development

« \Waste material properties and facility data are used to
calculate electricity and heat generation

— Energy balance to account for heat loss associated
with ash and moisture

LHV = Generated Electricity + Recovered Heat — Heat Loss
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Data Development

* Much of the data came from Covanta, peer-reviewed
literature, and engineering judgment

 Example data types:

— Waste fraction

* Elemental composition

* Heating values

« Al, Fe recovery efficiency
— Facility

« Costs

 Emissions Data
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Sample Data

Material Properties

Moisture Volatile Ash  Lower Heating Biogenic Carbon Fossil Carbon Hydrogen
Content Solids Content Value Content Content Content
Waste Fraction (% mass) (%TS) (%TS) (MJ/kg VS) (% TS) (%TS) (%TS)
Food Waste ~ 77.0 96.4 3.6 18.3 47.7 0.2 6.6
Vegetable
Food Waste - 57.1 94.2 5.8 24.6 56.5 1.13 7.9
Non-Vegetable
Newsprint 13.0 92.7 7.3 17.1 44.6 0.2 5.7
Corr. Cardboard 16.5 89 11 15.1 40.7 0.2 54

Facility Economic Data

Facility Lifetime 20  vyears
Unit WTE Capital Cost 300 S/design ton per year
Unit WTE O&M Cost 40  (S/year)/(design ton per year)

Facility Type Dependent Data

State of the Art Average
Electricity Production Efficiency

(% LHV) 24 19
Aluminum Recovery Efficiency (%) 65 35
CO Stack gas concentration 20 30

(ppm, at 7% oxygen, dry)

B2 |
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Mass Flows

* Model is capable of including beneficial reuse of ash
* Ferrous and non-ferrous are recovered from ash

— Material properties include aluminum, copper, and
iron content of each waste fraction

— Aluminum, copper, and iron recovery efficiencies are
user inputs
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Emission Modeling

Process specific Emissions are primarily governed by
emissions emission control systems rather than
the contents of the fuel input itself

Input specific Emissions are primarily governed by

emission the contents of the fuel input,
although emission control systems
may remove a certain fraction of the
components

4 )
The LCA modeling approach is critical for the results. If only

process specific emissions are applied, no effects from
changes in fuel input will be obtained.

- J
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Input Air Calculation

o =—-0.6990+1.50c+0.3571—-0.244/+1.50s + 0.053n

« All inputs are waste fraction chemical properties
Carbon (c), chlorine (I), hydrogen (h), nitrogen (n), oxygen (o), sulfur (s)

« The number of moles of air supplied (a) is needed to
convert input emissions from per volume to per mass
combusted

* ais determined by setting the flue gas to 7% oxygen
Regulations in ppm, at 7% oxygen
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Carbon Dioxide (CO,) Calculation

C H,N,S.0ClL+0o0,+3.78N,)+ wH,0 —

cCO2+(ﬁ+w—i]hg()ﬂ;,so2 (2 780 + ]N+
2 2 2
(O+a+ﬁ—c—ﬁ—ﬁ+i—5)0 +IHCT
2 2 4 2 4

Uses stoichiometry of combustion to calculate CO,
emissions for a given waste component (Harrison et. al,
2000)

12




\\\\\1 Wi/

NC STATE UNIVERSITY

Other Non-Metal Stack Emissions

* User inputs include stack emissions in ppm, or mass per
volume, which are used to calculate emissions for:

 Sulfur dioxide (SO,) * Methane (CH,)
 Hydrochloric acid (HCI)  Nitrous Oxide (N,O)
« Carbon monoxide (CO) « Ammonia (NH,)
 Particulate matter (PM) « Hydrocarbons

 Dioxins/Furans

« Sample calculation for SO, (kg SO2/Mg input waste)

£ 1m3 locul m3flue gas 1
S02 = PpmMvspo * W *motlecuLar masSsopz M
Ywaste dr P air

Calculated using input air (a)
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Metal Stack Emissions

« Chemical composition of each waste fraction used to
calculate the input amount of:

— Arsenic (As) — Nickel (Ni)

— Cadmium (Cd) — Lead(Pb)

— Chromium (Cr) — Antimony (Sb)

— Copper (Cu) — Zinc (Zn)

— Mercury (HQ) — Capability for Others

« E-waste components are significant source of metal
emissions, which are not modeled here in detall

 If metals emissions are a focal point, we recommend
pursuing other methods to estimate them.

@080 v
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Air-emission modeling

,

) \
e
(%)
L)
; . .
c Process-specific
2
S~
s
O
>
-8 ”
ye. -
o
o0
£

mg Cd/ton waste




NC STATE UNIVERSITY

Air Emissions and Control Systems
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Damgaard et al. (2010): Life-cycle-assessment of the historical development of air pollution control and energy

recovery in waste incineration. Waste Management, 30, 1244-1250
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Energy recovery
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lllustrative Results: Stack Emissions

S0, 2.9E-03
HCI 1.6E-03
NO, 3.6E-02
Carbon Monoxide (CO) 1.3E-02
PM 7.6E-04
Dioxins/Furans 7.6E-10
Methane (CH,) 4.0E-04
Nitrous Oxide (N,O) 1.3E-03
Ammonia (NH;) 7.7E-04
Hydrocarbons 1.9E-03

* As-generated waste composition for Seattle, WA
e State of the art facility
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Global Warming Potential (GWP)

600

B Gross GWP « Waste composition affects
B Offset GWP GWP

mher e « Model estimates for electricity
generation range from 670
kWH to 830 kWh per Mg for a
state of the art facility

» Greater electricity production
indicates greater offset GWP

* Metal recovery contributes to
offset
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Impact of LCI Data Selection on Offset
GWP

«  GWP for 1 kWh of electricity
ranges from 0.42 to 1.08 kg CO,-e
between NERC regions

« National average 0.71 kg CO,-e
per kWh

 NERC region selection can
determine whether facility has net
GWP costs or savings

« Geographic location of facility may
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Questions?

go.ncsu.edu/swolf

Morton Barlaz
barlaz@ncsu.edu

Jim Levis
jwlevis@ncsu.edu

Environmental Research y
& Education Foundation 4

Lighting a path to sustainable waste management practices

& National Science Foundation

WHERE DISCOVERTIES BEGIN
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