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Research Background

« Appropriate selection of waste processing technologies and efficient
waste management strategies can minimize environmental impacts,
particularly through energy generation and materials recovery.

« A progressive solid waste management strategy must account for
complex interrelationships among unit processes and competing
management objectives.

« Solid waste generation and composition is changing and must be
considered in future decisions (e.g., paper waste decreasing, food
waste increasing).

« Potential changes in climate change mitigation policies and energy
infrastructure will affect the optimal management of solid waste in the
future.
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SWOLF Research Objective

Evaluate system performance (i.e., economical, environmental) while
accounting for changes to waste composition and generation, SWM
policy, the U.S. energy system, and potential future GHG mitigation

policies Solid Waste Optimization Life-cycle Framework (SWOLF)

Impact Assessment
Model
(e.g., Global Warming,

GHG Policy Smog Formation)
Optimizable : (E:r(;si;ions
Energy System SWM Process Models Integrated SWM
* Energy Use
System Model
* Impacts

SWM Waste
Policy Generation and
Composition 3
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Benefits of Optimization Modeling

 How can net present cost be minimized over time?

— While meeting diversion or greenhouse gas
constraints

— Considering existing infrastructure
 How can environmental benefits be maximized?
— Minimize greenhouse gas emissions
— Minimize fossil energy use
— Maximize landfill diversion
— Impose a budget constraints
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Benefits of Optimization Modeling (cont’d)

« What are the mitigation costs ($/MTCOZ2E avoided) or
trade-offs associated with adopting a specific
technology or policy?

— WTE combustion, composting, AD, gasification-to-
biofuels, etc.

— Landfill organics bans, diversion targets, combustion

« How do changes to the energy system affect these
decisions?

« Can our system robustly adapt to changes in energy
system, waste composition or waste generation?
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Process Modeling

* Process level life-cycle assessment models form the foundation of this
work

* Process models are developed “bottom-up” to determine the costs,
emissions, and environmental impacts associated with each process in
consideration of waste quantities and composition

* Process models are then linked using mass balance equations to
develop full system models

* Included Processes
— Collection
— Transfer Stations
— Material recovery facilities
— Anaerobic Digestion
— Composting
— Landfills
— Remanufacturing
— Waste-to-energy
— Gasification
RDF 6
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How to best manage municipal

solid waste in Wake County,
NC?
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Problem Statement

Evaluate strategies to cost-effectively improve the
sustainability of Wake County’s municipal solid waste
management while considering

« changing population, waste generation and composition,
« landfill life,

* energy and material recovery, and

* environmental emissions and impacts
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Representing Wake County

System in SWOLF
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drop-off

/ Existing facility options\

 Composting facilities
(COMP)

e Landfill (LF)

e Single-stream material
recovery facility (SSMRF)

food waste)

Private waste

collection

\° Transfer station (TS) /
/ Future facility options \

e Anaerobic digestion (AD)

 Thermal waste-to-
energy (WTE)

 Mixed waste material
recovery facility

\ (MWMRF) /
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Waste
generation and
composition
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Scenarios

* Developed several scenarios to explore how new processes could be added to the
existing solid waste system.

Description
Model Objective: Least Cost

Separate collection of recyclables going to SSMRF and

(1) Current practice yard waste going to compost

As in case 1 plus food waste co-collected with yard

(2) Current + food waste collection
waste

(3) Current + food waste collection + AD enabled  F:R[iR=HPAIVEF-\DRIFo][Io

—

4) Case 3 + MWMRF As in case 1 plus MWMREF, AD enabled
5) Case 3 + WTE As in case 1 plus WTE, AD enabled

—

(6) Case 3 + WTE + MWMRF As in case 1 plus WTE, MWMRF, and AD enabled

11
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Adding FW collection to current system

* Because separate collection is already required, adding
food waste to yard waste collection has a trivial impact
on the average cost of collection ($/Mg)
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54 -
80 -4E+04 .. ¢ Cases 2 and 3 are
Q _ .
5 70 : - ' 4Ew00 521 Same solution, $47.6M
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OLF BCOMP OSSMRF 3 = organics, $50.7M
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Case 4: + MWMRF

* Current system + FW collection with AD enabled
(optional) +MWMRF

* Separate collection of recyclables and yard/food waste
required (3 separate collections)

« Set increasing diversion targets
— Lowest target = diversion in min-cost solution
— Highest target = diversion in max-diversion solution

13
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Case 4: + MWMRF
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Case 5: + WTE

« Current system + FW collection with AD enable
(optional) +WTE

« Separate collection required
« Set increasing diversion targets
— Lowest target = diversion in min-cost solution
— Highest target = diversion in max-diversion solution

15
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Case 6: + MWMRF + WTE

« Current system + FW collection with AD enable
(optional) +tMWMRF + WTE

* Separate collection of recyclables and yard/food waste
required (3 separate collections)

* Set increasing diversion targets
— Lowest target = diversion in min-cost solution
— Highest target = diversion in max-diversion solution

17
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Case 6: +MWMRF + WTE
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Wake County - Discussion

« Collecting residential food waste with yard waste is
predicted to decrease landfill greenhouse gas (GHG)
emissions by 12%, but has a modest effect on diversion
rate and landfill life.

* Increasing residential recycling participation will decrease
GHG emissions and increase landfill diversion.

* Increasing diversion does not necessarily decrease GHG
emissions

— Max diversion with Waste-to-Energy combustion is 81%
— Min GHG emissions occur with 77% diversion

County Commissioners are additionally concerned with
extending landfill life

@080 "
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What is the most
environmentally friendly way
to manage commercial food
waste?

Hodge, K. L., Levis, J. W., DeCarolis, J. F., Barlaz, M. A. (2016). A Systematic Evaluation of Industrial, Commercial, and
Institutional Food Waste Management Strategies in the U.S., Environ. Sci. Technol. 50(16): 84448452, DOI:
10.1021/acs.est.6b00893. 20
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Food Waste Composition
Compared treatment and

disposal of 1 Mg of
HFW-ICI discards

m Paper and Paperboard

m Glass

m Metals

m Plastics

m Rubber and Leather
Textiles

m Wood

m Other

m Food Waste

HFW-ICI — High Food Waste — Industrial, 5 t of HEW-ICI Discard m Yard Trimmings
COMRRRCial and Institutional waste CreEnt o il Discards
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Six HFW-ICI waste scenarios represent real
management choices (compared different levels of
performance for each)
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Landfill or WTE Landfill or WTE Landfill or WTE

Source Separation Effectiveness:
80% of Food Waste, 5% of residuals
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Base Case Results Confirm Landfilling
is Least Preferable
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AD is Generally Preferable to

Composting
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Moving from WTE to Composting is
Generally Detrimental
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eparately modeling waste
components Is essential

LF Facility Net GWP
LF Scenario _
LF Facility = +82 kg CO -€Q
[ Carbon Storage
1 [ Electricity Offsets
Emissions X Net

-400 -300 -200 -100 0 100 200 300 400
GWP (kg CO2-eq)
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omparing results to U.

Recovery Hierarchy

EPA
Industrial Uses
Provide waste oils for rendering and
1. AD fuel conversion and food scraps for
digestion to recover energy
' Composting
2. AC .~ Create a nutrient-rich
| soil amendment
Landfill/
Incineration
3 ’ WTE Last resort to
LF disposal

~ Base Case
1. AD
2. WTE
3. AC

4. LF
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Food Waste Discussion

 U.S. EPA's “Food Recovery Hierarchy” is not necessarily
universally applicable.

* Diverting food waste from landfills is generally beneficial,
while diverting food waste from WtE may be detrimental
to reducing emissions.

— Relevant in MA and CT where WLE is not considered
food waste diversion

« System performance and rankings are sensitive to food
waste properties and energy offsets.

— Regulators may wish to consider separate
requirements for relatively wet or dry food waste.
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Questions?

go.ncsu.edu/swolf

Morton Barlaz
barlaz@ncsu.edu

Jim Levis
jwlevis@ncsu.edu

Environmental Research y
& Education Foundation 4

Lighting a path to sustainable waste management practices

& National Science Foundation

WHERE DISCOVERTIES BEGIN

29
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