Compost and Anaerobic Digestion Process Modeling James Levis, PhD Research Assistant Professor Department of Civil, Construction, and Environmental Engineering Morton Barlaz, PhD Professor and Head Department of Civil, Construction, and Environmental Engineering Slides available at http://go.ncsu.edu/swm-lca.resouces http://go.ncsu.edu/iswm ### **Objectives of Composting and AD** - Growing interest in diverting food waste from landfills. - Food waste is the most discarded material in MSW. - Food waste decays rapidly compared to other materials and therefore generates a significant fraction of methane prior to gas collection at landfills. - Some food wastes contain significant quantities of N and P that can be recovered and returned to soil. ### **Biodegradable Materials** #### **MSW** - Yard waste (grass, leaves, branches) - Paper bags, biodegradable plastic bags - food waste - soiled paper (paper towels, tissues) ### Additional Compostables - sewage sludge (biosolids) - special wastes - agricultural - food processing industry - seafood, vegetable canning, brewery, etc. Feedstock mix must account for moisture, C, N, and free air Feedstock purity affects everything from pre/post screening, emissions, potential markets, and benefits ### Solid Waste Systems ### Composting A biological process in which organic matter is decomposed aerobically Organic matter + $$O_2$$ ---> CO_2 + H_2O + heat + cell mass ### **Mass Transformation in Composting** #### Incoming Mass #### 1,000 Secondary Primary 146 290 Pre-screen Pre-screen Residual Overs Shredding/ Grinding 144 710 Unders Amendments 0 Mixing 181 WaterAdded 1,330 358 **Active Composting** Off Gases 972 295 Post-screen 83 Residual 594 Vacuum 8 Residual 586 Curing 254 Off Gases Finished Compost ### **Key Inputs** | Facility Operating Parameters | Units | Value | |--|--------|-------| | Time spent at tipping floor | Mg/day | 1 | | Active composting time | Days | 70 | | Curing time | Days | 30 | | Equipment fuel and electricity use parameters | Units | Value | | Grinder power rating. | kWh/Mg | 10.6 | | Grinder fuel consumption | L/kWh | 0.25 | | Windrow turner power rating | kWh/Mg | 0.24 | | The fuel consumption of a windrow turner | L/kWh | 0.127 | | Turning frequency | 1/day | 0.33 | | Energy required per wet weight of post-screened material | kWh/Mg | 0.9 | | Frequency of turning during curing phase | 1/day | 0.14 | | Front end loader specific fuel consumption | L/kWh | 0.26 | | General equipment fuel consumption. | L/kWh | 0.26 | | Carbon and Nitrogen Balance During Composting | Units | Value | | Proportion of incoming C emitted | - | 0.58 | | Proportion of emitted C emitted as CH ₄ | - | 0.017 | | Proportion of incoming N emitted as NH ₃ | - | 0.04 | | Proportion of emitted N emitted as N ₂ O | - | 0.004 | ### **Compost Technologies** - Windrows - Cheapest\lowest tech - Least process or emission control - Higher retention time and land use - Aerated static pile - More costly - More process and emission control potential - Lower retention time\reduced land use - Gore Compost Covers - Mix of windrow/ASP - In-vessel composting - Most costly - Most process and emission control potential - Lowest retention times and least land use Choice of technology will depend on feedstocks ### **Digestate/Compost Use** - Soil conditioner: high organic content increases moisture holding capacity of soil - Nutrient content - depends on the starting material - nutrients and/or soil may be added for certain markets - Markets (identify before producing compost) - landfill cover soil mixed MSW - nurseries and landscapers for seedlings yard waste - state roads and parks yard waste - city residents (give away or sell) yard waste - Agriculture IF the material is pure and has a nutrient value - Model allows - No offset - Fertilizer offset (N,P,K) Peat offset ### **End Product Use Inputs** | Compost Land Application Parameters | Units | Better | Typic
al | Worse | |--|----------------------|--------|-------------|-------| | Distance to application site | km | 20 | 20 | 20 | | Percent of applied N evaporated as N ₂ O | % | 1.5 | 1.5 | 1.5 | | Percent of ammonia that evaporates | % | 15 | 15 | 15 | | Percent N that is ammonia | % | 50 | 50 | 50 | | Cured solids application diesel use | L/Mg solids | 0.80 | 0.80 | 0.80 | | Percent of carbon in solids remaining after 100 years ^b | % | 10 | 10 | 10 | | Nitrate leaching to groundwater | kg N/kg N
applied | 0 | 0.135 | 0.3 | | Nitrate run-off to surface water | kg N/kg N
applied | 0.04 | 0.14 | 0.87 | | Fertilizer Land Application Parameters | Units | Better | Typical | Worse | |--|--------|--------|---------|--------| | Diesel fuel for application per kg N | L/kg N | 0.0029 | 0.0029 | 0.0029 | | Diesel fuel for application per kg P | L/kg P | 0.0023 | 0.0023 | 0.0023 | | Diesel fuel for application per kg K | L/kg K | 0.0016 | 0.0016 | 0.0016 | | Nitrate runoff to surface water | % | 5.0 | 10.0 | 40.0 | | Nitrate leaching to ground water | % | 5.0 | 10.0 | 40.0 | | N released as N ₂ O | % | 0.1 | 2.3 | 5.8 | | N as NH ₃ | % | 50 | 50 | 50 | | NH ₂ evaporated | % | 3.0 | 5.0 | 7.0 | # Illustrative Results (Fertilizer Offset) –GWP (1 ton food waste; 0.3 tons yard waste) # Illustrative Results (Fertilizer Offset) –Total Energy Use (1 ton food waste; 0.3 tons yard waste) ### **Anaerobic Digestion** - A biological process in which organic matter is decomposed anaerobically - Organic matter ---> CO₂ + CH₄ + NH₃ + H₂S + cell mass ### **Degradation** # **Anaerobic Digestion Material Flow** Base results using wet, single-stage, mesophilic default inputs ### **Key Mass Flow/Process Default Inputs** | Digester Operating Parameters | Units | Value | |--|--------|---------| | Reactor moisture content. | - | 0.92 | | Facility specific electricity usage. | kWh/Mg | 58 | | Biogas leakage rate | - | 0.03 | | Proportion of gas that is flared without electricity generation. | - | 0.05 | | Digestate Liquids Management | Units | Value | | Amount of BOD in digestate | kg/L | 0.0023 | | Total N | kg/L | 0.00135 | | Percent of total N that is NH ₃ | % | 50 | | Distance to liquids treatment facility | km | 0 | | Electricity used per pound of BOD removed. | kWh/kg | 1 | | BOD removal efficiency. | - | 0.92 | | Digestate Solids Curing | Units | Value | | Digestate moisture content after dewatering | - | 0.6 | | Retention time in windrows | days | 21 | | Turning energy required per ton of compost | kWh/Mg | 0.24 | | The fuel consumption of a windrow turner | L/kWh | 0.13 | | Turning frequency | 1/days | 0.43 | | Proportion of emitted C emitted as CH ₄ | - | 0.017 | | Proportion of emitted N emitted as NH ₃ | - | 0.04 | | Proportion of emitted N emitted as N ₂ O | - | 0.004 | | VS reduction of digestate during curing | - | 0.3 | ### **AD Technologies** - Level of pretreatment (screening, shredding, sorting, etc.) - Reactor - Solids Content - Dry (>20% solids) or Wet (<20% solids) - Temperature - Mesophilic (~36°C) or Thermophilic (53-55°C) - Number of stages - 1 or 2 - Two is more expensive but provides more control - Digestate management (screening, dewatering, curing, etc.) - Biogas management (flare, energy) ### **Biogas Beneficial Use in SWOLF** - Biogas production estimated using material-specific: - Methane potential - Percent of methane potential reached in modeled AD system - Combustion for electricity production - Generation estimated using heating value of methane and heat rate of engine/turbine system. - System downtime, biogas leakage considered. - Offset electricity generation for chosen grid. ### Illustrative Results – **Comparison of Digestate Management** Curing **Direct Land Application** ### Illustrative Results – Influence of Electricity Offsets ### Research and Data Needs - Better understanding of material substitution associated with beneficial use of compost/digestate - Data on AD CH₄ leakage rates - Understanding of C and nutrient flows from feedstocks to final compost - Whether and how different AD reactor configuration affect CH₄ production ### **Questions?** Jim Levis jwlevis@ncsu.edu Morton Barlaz barlaz@ncsu.edu http://go.ncsu.edu/iswm ### References - Berglund, M. & Börjesson, P. (2006) Assessment of energy performance in the life-cycle of biogas production. Biomass and Bioenergy, 30,254–266. - Boldrin, A.; Andersen, J.K.; Moller, J.; Christensen, T.H.; Favoino, E. (2009) Composting and compost utilization: accounting of greenhouse gases and global warming contributions Waste Manage. Res., 27 (8), 800-812. - Bruun, S., Hansen, T.L., Christensen, T.H., Magid, J. & Jensen, L.S. (2006) Application of processed organic municipal solid waste on agricultural land: a scenario analysis. Environmental Modeling and Assessment, 11, 251-265. - Hansen, T.L., Bhander, G.S., Christensen, T.H., Bruun, S. & Jensen, L.S. (2006) Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE). Waste Management & Research, 24, 153-166. - Komilis, D. P.; Ham, R. K. (2004). Life-Cycle Inventory of Municipal Solid Waste and Yard Waste Windrow Composting in the United States. J. Env Eng, 130(11), 1390–1400. - Levis, J. W.; Barlaz, M. A. (2011). What is the most environmentally beneficially way to treat commercial food waste? Environ. Sci. Technol, 45 (17), 7438-7444. - Levis, J. W., Barlaz, M. A., (2013). *Composting Process Model Documentation*. Raleigh, NC. http://www4.ncsu.edu/~jwlevis/Composting.pdf. - U.S. EPA (2003) A Laboratory Study to Investigate Gaseous Emissions and Solids Decomposition During Composting of Municipal Solid Wastes EPA-600/R-03-004; U.S. EPA, Office of Solid Waste: Washington, DC, 2003. - U.S. EPA. 2004 Exhaust and crankcase emission factrs for nonroad engine modeling compression-ignition EPA420-P-04-009. Office of Air and Radiation. - U.S. EPA (2006) Solid Waste Management and Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks http://www.epa.gov/climatechange/wycd/waste/downloads/fullreport.pdf Date accessed: 06-02-2010. - U.S. DOE 2003 Commercial building energy consumption and expenditures 2003 Energy Information Administration, http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=3.1.13