## **Compost and Anaerobic Digestion Process Modeling**

James Levis, PhD

Research Assistant Professor

Department of Civil, Construction, and Environmental Engineering

Morton Barlaz, PhD

Professor and Head

Department of Civil, Construction, and Environmental Engineering

Slides available at http://go.ncsu.edu/swm-lca.resouces



http://go.ncsu.edu/iswm



### **Objectives of Composting and AD**

- Growing interest in diverting food waste from landfills.
- Food waste is the most discarded material in MSW.
- Food waste decays rapidly compared to other materials and therefore generates a significant fraction of methane prior to gas collection at landfills.
- Some food wastes contain significant quantities of N and P that can be recovered and returned to soil.



### **Biodegradable Materials**

#### **MSW**

- Yard waste (grass, leaves, branches)
  - Paper bags, biodegradable plastic bags
- food waste
- soiled paper (paper towels, tissues)

### Additional Compostables

- sewage sludge (biosolids)
- special wastes
  - agricultural
  - food processing industry
    - seafood, vegetable canning, brewery, etc.

Feedstock mix must account for moisture, C, N, and free air

Feedstock purity affects everything from pre/post screening, emissions, potential markets, and benefits



### Solid Waste Systems





### Composting

 A biological process in which organic matter is decomposed aerobically

Organic matter + 
$$O_2$$
 --->  $CO_2$  +  $H_2O$  + heat + cell mass



### **Mass Transformation in Composting**





#### Incoming Mass

#### 1,000 Secondary Primary 146 290 Pre-screen Pre-screen Residual Overs Shredding/ Grinding 144 710 Unders Amendments 0 Mixing 181 WaterAdded 1,330 358 **Active Composting** Off Gases 972 295 Post-screen 83 Residual 594 Vacuum 8 Residual 586 Curing 254 Off Gases

Finished Compost







### **Key Inputs**

| Facility Operating Parameters                            | Units  | Value |
|----------------------------------------------------------|--------|-------|
| Time spent at tipping floor                              | Mg/day | 1     |
| Active composting time                                   | Days   | 70    |
| Curing time                                              | Days   | 30    |
| Equipment fuel and electricity use parameters            | Units  | Value |
| Grinder power rating.                                    | kWh/Mg | 10.6  |
| Grinder fuel consumption                                 | L/kWh  | 0.25  |
| Windrow turner power rating                              | kWh/Mg | 0.24  |
| The fuel consumption of a windrow turner                 | L/kWh  | 0.127 |
| Turning frequency                                        | 1/day  | 0.33  |
| Energy required per wet weight of post-screened material | kWh/Mg | 0.9   |
| Frequency of turning during curing phase                 | 1/day  | 0.14  |
| Front end loader specific fuel consumption               | L/kWh  | 0.26  |
| General equipment fuel consumption.                      | L/kWh  | 0.26  |
| Carbon and Nitrogen Balance During Composting            | Units  | Value |
| Proportion of incoming C emitted                         | -      | 0.58  |
| Proportion of emitted C emitted as CH <sub>4</sub>       | -      | 0.017 |
| Proportion of incoming N emitted as NH <sub>3</sub>      | -      | 0.04  |
| Proportion of emitted N emitted as N <sub>2</sub> O      | -      | 0.004 |



### **Compost Technologies**

- Windrows
  - Cheapest\lowest tech
  - Least process or emission control
  - Higher retention time and land use
- Aerated static pile
  - More costly
  - More process and emission control potential
  - Lower retention time\reduced land use
- Gore Compost Covers
  - Mix of windrow/ASP
- In-vessel composting
  - Most costly
  - Most process and emission control potential
    - Lowest retention times and least land use

Choice of technology will depend on feedstocks



### **Digestate/Compost Use**

- Soil conditioner: high organic content increases moisture holding capacity of soil
- Nutrient content
  - depends on the starting material
  - nutrients and/or soil may be added for certain markets
- Markets (identify before producing compost)
  - landfill cover soil mixed MSW
  - nurseries and landscapers for seedlings yard waste
  - state roads and parks yard waste
  - city residents (give away or sell) yard waste
  - Agriculture IF the material is pure and has a nutrient value
- Model allows
  - No offset
  - Fertilizer offset (N,P,K)



Peat offset

### **End Product Use Inputs**

| Compost Land Application Parameters                                | Units                | Better | Typic<br>al | Worse |
|--------------------------------------------------------------------|----------------------|--------|-------------|-------|
| Distance to application site                                       | km                   | 20     | 20          | 20    |
| Percent of applied N evaporated as N <sub>2</sub> O                | %                    | 1.5    | 1.5         | 1.5   |
| Percent of ammonia that evaporates                                 | %                    | 15     | 15          | 15    |
| Percent N that is ammonia                                          | %                    | 50     | 50          | 50    |
| Cured solids application diesel use                                | L/Mg solids          | 0.80   | 0.80        | 0.80  |
| Percent of carbon in solids remaining after 100 years <sup>b</sup> | %                    | 10     | 10          | 10    |
| Nitrate leaching to groundwater                                    | kg N/kg N<br>applied | 0      | 0.135       | 0.3   |
| Nitrate run-off to surface water                                   | kg N/kg N<br>applied | 0.04   | 0.14        | 0.87  |

| Fertilizer Land Application Parameters | Units  | Better | Typical | Worse  |
|----------------------------------------|--------|--------|---------|--------|
| Diesel fuel for application per kg N   | L/kg N | 0.0029 | 0.0029  | 0.0029 |
| Diesel fuel for application per kg P   | L/kg P | 0.0023 | 0.0023  | 0.0023 |
| Diesel fuel for application per kg K   | L/kg K | 0.0016 | 0.0016  | 0.0016 |
| Nitrate runoff to surface water        | %      | 5.0    | 10.0    | 40.0   |
| Nitrate leaching to ground water       | %      | 5.0    | 10.0    | 40.0   |
| N released as N <sub>2</sub> O         | %      | 0.1    | 2.3     | 5.8    |
| N as NH <sub>3</sub>                   | %      | 50     | 50      | 50     |
| NH <sub>2</sub> evaporated             | %      | 3.0    | 5.0     | 7.0    |

# Illustrative Results (Fertilizer Offset) –GWP (1 ton food waste; 0.3 tons yard waste)





# Illustrative Results (Fertilizer Offset) –Total Energy Use (1 ton food waste; 0.3 tons yard waste)





### **Anaerobic Digestion**

- A biological process in which organic matter is decomposed anaerobically
  - Organic matter ---> CO<sub>2</sub> + CH<sub>4</sub> + NH<sub>3</sub> + H<sub>2</sub>S + cell mass



### **Degradation**





# **Anaerobic Digestion Material Flow**

Base results using wet, single-stage, mesophilic default inputs







### **Key Mass Flow/Process Default Inputs**

| Digester Operating Parameters                                    | Units  | Value   |
|------------------------------------------------------------------|--------|---------|
| Reactor moisture content.                                        | -      | 0.92    |
| Facility specific electricity usage.                             | kWh/Mg | 58      |
| Biogas leakage rate                                              | -      | 0.03    |
| Proportion of gas that is flared without electricity generation. | -      | 0.05    |
| Digestate Liquids Management                                     | Units  | Value   |
| Amount of BOD in digestate                                       | kg/L   | 0.0023  |
| Total N                                                          | kg/L   | 0.00135 |
| Percent of total N that is NH <sub>3</sub>                       | %      | 50      |
| Distance to liquids treatment facility                           | km     | 0       |
| Electricity used per pound of BOD removed.                       | kWh/kg | 1       |
| BOD removal efficiency.                                          | -      | 0.92    |
| Digestate Solids Curing                                          | Units  | Value   |
| Digestate moisture content after dewatering                      | -      | 0.6     |
| Retention time in windrows                                       | days   | 21      |
| Turning energy required per ton of compost                       | kWh/Mg | 0.24    |
| The fuel consumption of a windrow turner                         | L/kWh  | 0.13    |
| Turning frequency                                                | 1/days | 0.43    |
| Proportion of emitted C emitted as CH <sub>4</sub>               | -      | 0.017   |
| Proportion of emitted N emitted as NH <sub>3</sub>               | -      | 0.04    |
| Proportion of emitted N emitted as N <sub>2</sub> O              | -      | 0.004   |
| VS reduction of digestate during curing                          | -      | 0.3     |

### **AD Technologies**

- Level of pretreatment (screening, shredding, sorting, etc.)
- Reactor
  - Solids Content
    - Dry (>20% solids) or Wet (<20% solids)</li>
  - Temperature
    - Mesophilic (~36°C) or Thermophilic (53-55°C)
  - Number of stages
    - 1 or 2
    - Two is more expensive but provides more control
- Digestate management (screening, dewatering, curing, etc.)
- Biogas management (flare, energy)



### **Biogas Beneficial Use in SWOLF**

- Biogas production estimated using material-specific:
  - Methane potential
  - Percent of methane potential reached in modeled AD system
- Combustion for electricity production
  - Generation estimated using heating value of methane and heat rate of engine/turbine system.
  - System downtime, biogas leakage considered.
  - Offset electricity generation for chosen grid.



### Illustrative Results – **Comparison of Digestate Management**





Curing

**Direct Land Application** 

### Illustrative Results – Influence of Electricity Offsets





### Research and Data Needs

- Better understanding of material substitution associated with beneficial use of compost/digestate
- Data on AD CH<sub>4</sub> leakage rates
- Understanding of C and nutrient flows from feedstocks to final compost
- Whether and how different AD reactor configuration affect CH<sub>4</sub> production



### **Questions?**



Jim Levis jwlevis@ncsu.edu

Morton Barlaz barlaz@ncsu.edu







http://go.ncsu.edu/iswm

### References

- Berglund, M. & Börjesson, P. (2006) Assessment of energy performance in the life-cycle of biogas production. Biomass and Bioenergy, 30,254–266.
- Boldrin, A.; Andersen, J.K.; Moller, J.; Christensen, T.H.; Favoino, E. (2009) Composting and compost utilization: accounting of greenhouse gases and global warming contributions Waste Manage. Res., 27 (8), 800-812.
- Bruun, S., Hansen, T.L., Christensen, T.H., Magid, J. & Jensen, L.S. (2006) Application of processed organic municipal solid waste on agricultural land: a scenario analysis. Environmental Modeling and Assessment, 11, 251-265.
- Hansen, T.L., Bhander, G.S., Christensen, T.H., Bruun, S. & Jensen, L.S. (2006) Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE). Waste Management & Research, 24, 153-166.
- Komilis, D. P.; Ham, R. K. (2004). Life-Cycle Inventory of Municipal Solid Waste and Yard Waste Windrow Composting in the United States. J. Env Eng, 130(11), 1390–1400.
- Levis, J. W.; Barlaz, M. A. (2011). What is the most environmentally beneficially way to treat commercial food waste? Environ. Sci. Technol, 45 (17), 7438-7444.
- Levis, J. W., Barlaz, M. A., (2013). *Composting Process Model Documentation*. Raleigh, NC. http://www4.ncsu.edu/~jwlevis/Composting.pdf.
- U.S. EPA (2003) A Laboratory Study to Investigate Gaseous Emissions and Solids Decomposition During Composting of Municipal Solid Wastes EPA-600/R-03-004; U.S. EPA, Office of Solid Waste: Washington, DC, 2003.
- U.S. EPA. 2004 Exhaust and crankcase emission factrs for nonroad engine modeling compression-ignition EPA420-P-04-009. Office of Air and Radiation.
- U.S. EPA (2006) Solid Waste Management and Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks http://www.epa.gov/climatechange/wycd/waste/downloads/fullreport.pdf Date accessed: 06-02-2010.
- U.S. DOE 2003 Commercial building energy consumption and expenditures 2003 Energy Information Administration, http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=3.1.13

