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Outline

Introduction

— Functional Unit

Carbon Flows

Key Sub-Processes

Modeling an average landfill

— Consider multiple gas management scenarios
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The Landfill Process Model

Incoming Waste
Materials (Mg™")

y

User Inputs —| Landfill Process Model

Stored Mass
(Mgstored/ Mgin)

> Direct Emissions (kg/Mg'")
—> Equipment Fuel Use (L/Mg™")

—> Electricity Use (kWh/Mg™")

—> Transportation Use (kg-km/Mg")

—> Amortized Capital Cost ($/Mg™n)

I—> Operating Cost ($/Mg")
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Functional Unit:

Landfills or Waste in Landfills

« Appropriately defining the functional unit is essential for
landfill life-cycle modeling

* There is confusion in functional units:
— A representative unit volume in a landfill

— The behavior over time of a mass of waste disposed in a
landfill

* Modeling a landfill requires modeling waste disposed over
years in different cells with phased collection and cover
systems.

* Modeling a ton of waste in a landfill requires developing
temporally averaged emissions from the waste placed at
different times in the landfill

« SWOLF models a ton of waste disposed in a landfill which is

@mappropriate for comparison of waste management alternatives
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Landfill carbon flows
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Landfill Fuel and Electricity Use
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Analyzing Waste in Typical Landfills or a
Specific Landfill

 The LCA goals must include a decision on whether to
model a specific landfill or a “typical” or “average” landfill.

— A city or county may model their specific landfill.

— A waste generator or product manufacturer may
model “average” landfills because their products
could be disposed in any landfill.

« The SWOLF framework is capable of modeling a ton of
waste in a specific or average landfill

@080 Y
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Landfill gas modeling - Effect of
decay rate on methane generation
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Effect of decay rate on methane collection

* Ly=100 m3/wet Mg
e Values for waste buried in first year.
e Collection efficiency varies with time, decay rate, and landfill operation.
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Probabilty Density

Do Landfills Operate?

Length of operations affects
total landfill gas generation
and collection.

Flare and beneficial use are
dependent on gas
collection.

Flare CAA requirements
* Ability to run engines

Data (landfills w/ at least
100,000 tons in place)
Mean —46.6
StDev-37.4
10th percentile — 16
Median — 38
90t percentile — 87
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Data values developed based on discussions among the WARM Landfill Working
Group

CAA CA
Parameter Aggressive Typical Min Regs
Time until initial gas collection (yr) 0.5 2 5 1
Initial gas collection efficiency (%) 50 50 50 50
Time to increased gas collection efficiency
(yr) 3 5 5 2
Increased gas collection efficiency (%) 75 75 75 80
Time from initial waste placement to long
term cover (yr) 15 15 15 8
Gas collection efficiency under long term
cover (%) 82.5 82.5 82.5 85
Time from final waste placement to final
cover (yr) 1 1 1 1
Gas collection efficiency under final cover
(%) 90 90 90 90
Collection System Downtime (%) 3 3 3 1.1

@oee
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Flare and Energy Recovery Operational

Parameters
Flare Cutoff Criteria Aggressive Typical CAA Min CA Regs
NMOC Emissions Cutoff (Mg/yr) 50 50 50 50
Minimum Operation Time (yr) 16 16 16 16
Collected LFG Cutoff (cfm) - - - 100

Energy Recovery Parameters (all scenarios)

* Minimum LFG collection flow rate for energy recovery — 350 cfm

= Time above 350 cfm required before energy recovery begins — 1 yr
= Total time above 350 cfm required for energy recovery — 5 yrs

34 34
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Oxidation Parameters

* Percent oxidation values were developed based on new EPA
guidance.

* Rates reflect the fact that
— Percent oxidation is a function of methane flux (g CH,/m?-s)

— Flux is of collection efficiency and methane generation rate
(g CH,/kg waste)

— Collection efficiency and methane generation rate are
functions of time

Oxidation Situation Value (%)
Without gas collection or final cover 10
With gas collection before final cover 20
After final cover installation .. 35

B2
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Temporally Averaged Waste Age Landfill
Gas Collection and Oxidation Efficiency

e 200,000 tons/yr

* 35 year operation

e Typical gas collection

« Gas collection ceases at year 75 (not enough gas to generate electricity)
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lllustrative Results

k=0.04 yrt
Typical Gas Collection
1500 @ Fuel and Electricity Use @ Fugitive Methane Emissions
Biogenic Carbon Storage O Electricity Offset

= 1000 , Net GHG Emissions
&
0, 500 I
O
=
2 -500 :
- = _
Ll
o ~1000
T
G

-1500

-2000

5 ) 5 O O S R C 24 5 N 5
g RS o O N 3 ¢ & & S o~
\g:b e N EQ° ,\Q,'\S} © 2 S v bé\ W
N L
NN
@) 37

®
%



Ty
N NC STATE UNIVERSITY

@080

Model Implementation

Ran 2000 Monte Carlo simulations with randomly
selected operating life and waste acceptance

Modeled four (4) collection scenarios with and without
beneficial energy recovery.

— Aggressive Collection (Aggressive)

— Typical Collection (Typical)

— CAA Regulatory Minimum Collection (CAA Min)

— California AB-32 Regulatory Collection (Cali Regs)
Modeled four (4) bulk decay rates

— k =0.02, 0.04, 0.06, 0.12 yr

— Influences waste component decay rate

38



\\\\\1 Wi/

NC STATE UNIVERSITY

Model Implementation

 Modeled 12 degradable waste components

= Branches = Corrugated Cardboard = Lumber
= @Grass = Magazines/3™ Class Mail = Medium-density Fiberboard
= Leaves = Newspaper = Wood flooring

= Food Scraps Office Paper = Mixed MSW

39
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U.S. Landfill Population

Landfill type Annual Decay Rate Percent of
Precipitation (yrt)? Waste
(cm)? Received®
Arid <51 0.02 20.0
Moderate 51 < x<102 0.04 28.9
Wet >102 0.06 41.1
Bioreactor N/A 0.12¢ 10.0

a. From U.S. EPA, 2010.
b. Adjusted based on U.S. EPA, 2010 based on assumption of 10% in bioreactors
c. Judgment based on values reported in Barlaz et al., 2010 and Tolaymat et al., 2010.

40
40 40
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Results — Mixed Waste w/ Energy Recovery
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* 12-41% of generated methane is emitted (22-41% outside California).
* Increasing decay rate leads to greater emissions.

« Little difference between Aggressive and Typical collection scenarios.
« California regulations significantly decrease emissions.

« Collected gas results in energy offsets while emitted gas represents a greenhouse

gas emission
41
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Results — Mixed Waste w/out Energy Recovery
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« 17-48% of generated methane is emitted (34-48% outside California).

 Emissions increase by 7 to 22% over Energy Recovery scenario for non-
California scenarios

— More at lower decay rates
« Effect of decay rate is more complicated
— Faster decay is better in Aggressive and Typical.

@oeeDecay rate of 0.04 and 0.06 best'in CAA Min and CA Regs scenarios
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National Average Landfill Gas Emissions
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* For landfills with energy recovery, Californian regulations decrease fugitive
emissions by 35-50% by increasing effective collection efficiency by 12-18%.
* For landfills without energy recovery, Californian regulations decrease
fugitive emissions by 51-57% by increasing effective collection efficiency by
@B34%. -
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Leachate Generation
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Alternative would be to assign a value in liters/ha-day that varies with time and climate
44
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Leachate Collection Periods: Length of time
and % of Leachate Collection for Treatment

Traditional Leachate

Recirculation
Landfill
1: After waste placement and 1 0 0 0

before recirculation

2: During landfill operations 1-20 100 0 100
3: After landfill closure 21-100 100 100 100
4. Between some time post- 0 100 100 100

closure and the end of the
modeling period

User may assume release to the environment or accumulation of leachate
45
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Leachate Composition

* Pollutants that vary with time (BOD) and others that are
constant (TSS)

« BOD concentration varies with time

— Multiply concentration by generation to obtain mass
BOD/ton total waste

 Allocate BOD based on fraction of total gas
— 0O for plastic, non-zero for food waste

N and P: derived allocation fractions based on total N
and P in leachate from waste component specific lab
studies

 Metals: Allocated according to their presence in waste
components

@080 *
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Leachate Treatment

« Estimated treatment efficiencies and energy
requirements

— Treated leachate is released to the environment

* Model is formulated so that user can specify release of
untreated leachate to the environment

47
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Questions?

go.ncsu.edu/swolf

Morton Barlaz
barlaz@ncsu.edu

Jim Levis
jwlevis@ncsu.edu

Environmental Research y
& Education Foundation 4

Lighting a path to sustainable waste management practices

& National Science Foundation

WHERE DISCOVERTIES BEGIN
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