

Landfill Process Modeling

Slides available at http://go.ncsu.edu/swm-lca.resouces

Jim Levis, PhD
Research Assistant Professor
Department of Civil, Construction, and Environmental Engineering

Morton Barlaz, PhD, PE
Professor and Head
Department of Civil, Construction, and Environmental Engineering

Outline

- Introduction
 - Functional Unit
- Carbon Flows
- Key Sub-Processes
- Modeling an average landfill
 - Consider multiple gas management scenarios

Solid Waste Systems

The Landfill Process Model

Functional Unit: Landfills or Waste in Landfills

- Appropriately defining the functional unit is essential for landfill life-cycle modeling
- There is confusion in functional units:
 - A representative unit volume in a landfill
 - The behavior over time of a mass of waste disposed in a landfill
- Modeling a landfill requires modeling waste disposed over years in different cells with phased collection and cover systems.
- Modeling a ton of waste in a landfill requires developing temporally averaged emissions from the waste placed at different times in the landfill
- SWOLF models a ton of waste disposed in a landfill which is appropriate for comparison of waste management alternatives.

Landfill carbon flows

Analyzing Waste in Typical Landfills or a Specific Landfill

- The LCA goals must include a decision on whether to model a specific landfill or a "typical" or "average" landfill.
 - A city or county may model their specific landfill.
 - A waste generator or product manufacturer may model "average" landfills because their products could be disposed in any landfill.
- The SWOLF framework is capable of modeling a ton of waste in a specific or average landfill

Material Properties

Landfill gas modeling - Effect of decay rate on methane generation

Effect of decay rate on methane collection

- $L_0 = 100 \text{ m}^3/\text{wet Mg}$
- Values for waste buried in first year.
- Collection efficiency varies with time, decay rate, and landfill operation.

How Long Do Landfills Operate?

- Length of operations affects total landfill gas generation and collection.
- Flare and beneficial use are dependent on gas collection.
 - Flare CAA requirements
 - Ability to run engines

Data (landfills w/ at least 100,000 tons in place)

Mean - 46.6

StDev - 37.4

10th percentile – 16

Median – 38

90th percentile – 87

How Big is a Landfill?

- Annual waste acceptance affects total landfill gas generation and collection.
- Flare and beneficial use are dependent on gas collection.
 - Flare CAA requirements
 - Ability to run engines

Data (landfills w/ at least 100,000 tons in place)

Mean – 159 (1000 tpy)

StDev - 236

10th percentile – 14

Median - 77

90th percentile – 385

Landfill gas collection scenarios

Data values developed based on discussions among the WARM Landfill Working Group

			CAA	CA
Parameter	Aggressive	Typical	Min	Regs
Time until initial gas collection (yr)	0.5	2	5	1
Initial gas collection efficiency (%)	50	50	50	50
Time to increased gas collection efficiency				
(yr)	3	5	5	2
Increased gas collection efficiency (%)	75	75	75	80
Time from initial waste placement to long				
term cover (yr)	15	15	15	8
Gas collection efficiency under long term				
cover (%)	82.5	82.5	82.5	85
Time from final waste placement to final				
cover (yr)	1	1	1	1
Gas collection efficiency under final cover				
(%)	90	90	90	90
Collection System Downtime (%)	3	3	3	1.1

Flare and Energy Recovery Operational Parameters

Flare Cutoff Criteria	Aggressive	Typical	CAA Min	CA Regs
NMOC Emissions Cutoff (Mg/yr)	50	50	50	50
Minimum Operation Time (yr)	16	16	16	16
Collected LFG Cutoff (cfm)	-	-	-	100

Energy Recovery Parameters (all scenarios)

- Minimum LFG collection flow rate for energy recovery 350 cfm
- Time above 350 cfm required before energy recovery begins 1 yr
- Total time above 350 cfm required for energy recovery 5 yrs

34

Oxidation Parameters

- Percent oxidation values were developed based on new EPA guidance.
- Rates reflect the fact that
 - Percent oxidation is a function of methane flux (g CH₄/m²-s)
 - Flux is of collection efficiency and methane generation rate (g CH₄/kg waste)
 - Collection efficiency and methane generation rate are functions of time

Oxidation Situation	Value (%)
Without gas collection or final cover	10
With gas collection before final cover	20
After final cover installation 35	35

Temporally Averaged Waste Age Landfill Gas Collection and Oxidation Efficiency

- 200,000 tons/yr
- 35 year operation
- Typical gas collection
- Gas collection ceases at year 75 (not enough gas to generate electricity)

Illustrative Results

k = 0.04 yr⁻¹ Typical Gas Collection

-2000
Leaves Grass Food Wood Textiles ONP OCC OFFP Branches Food Wood Textiles ONP OCC OFFP Ragazines Magazines Wagazines Landed Williams

Model Implementation

- Ran 2000 Monte Carlo simulations with randomly selected operating life and waste acceptance
- Modeled four (4) collection scenarios with and without beneficial energy recovery.
 - Aggressive Collection (Aggressive)
 - Typical Collection (Typical)
 - CAA Regulatory Minimum Collection (CAA Min)
 - California AB-32 Regulatory Collection (Cali Regs)
- Modeled four (4) bulk decay rates
 - $k = 0.02, 0.04, 0.06, 0.12 yr^{-1}$
 - Influences waste component decay rate

Model Implementation

- Modeled 12 degradable waste components
 - Branches

Corrugated Cardboard

Grass

Magazines/3rd Class Mail

- Leaves
- Food Scraps
- Newspaper
- Office Paper

- Lumber
- Medium-density Fiberboard
- Wood flooring
- Mixed MSW

U.S. Landfill Population

Landfill type	Annual Precipitation	Decay Rate (yr ⁻¹) ^a	Percent of Waste
	(cm) ^a		Received ^b
Arid	<51	0.02	20.0
Moderate	51 < x <102	0.04	28.9
Wet	>102	0.06	41.1
Bioreactor	N/A	0.12 ^c	10.0

- a. From U.S. EPA, 2010.
- b. Adjusted based on U.S. EPA, 2010 based on assumption of 10% in bioreactors
- c. Judgment based on values reported in Barlaz et al., 2010 and Tolaymat et al., 2010.

Results – Mixed Waste w/ Energy Recovery

- 12-41% of generated methane is emitted (22-41% outside California).
- Increasing decay rate leads to greater emissions.
- Little difference between Aggressive and Typical collection scenarios.
- California regulations significantly decrease emissions.
- Collected gas results in energy offsets while emitted gas represents a greenhouse gas emission

Results – Mixed Waste w/out Energy Recovery

- 17-48% of generated methane is emitted (34-48% outside California).
- Emissions increase by 7 to 22% over Energy Recovery scenario for non-California scenarios
 - More at lower decay rates
- Effect of decay rate is more complicated
 - Faster decay is better in Aggressive and Typical.

National Average Landfill Gas Emissions

- For landfills with energy recovery, Californian regulations decrease fugitive emissions by 35-50% by increasing effective collection efficiency by 12-18%.
- For landfills without energy recovery, Californian regulations decrease fugitive emissions by 51-57% by increasing effective collection efficiency by

<u>087</u>34%

Leachate Generation

Alternative would be to assign a value in liters/ha-day that varies with time and climate

Leachate Collection Periods: Length of time and % of Leachate Collection for Treatment

Period	Time (yr)	Traditional	Leachate Recirculation Landfill	Ash
1: After waste placement and before recirculation	1	0	0	0
2: During landfill operations	1-20	100	0	100
3: After landfill closure	21-100	100	100	100
4. Between some time post- closure and the end of the modeling period	0	100	100	100

User may assume release to the environment or accumulation of leachate

Leachate Composition

- Pollutants that vary with time (BOD) and others that are constant (TSS)
- BOD concentration varies with time
 - Multiply concentration by generation to obtain mass BOD/ton total waste
 - Allocate BOD based on fraction of total gas
 - 0 for plastic, non-zero for food waste
- N and P: derived allocation fractions based on total N and P in leachate from waste component specific lab studies
- Metals: Allocated according to their presence in waste components

Leachate Treatment

- Estimated treatment efficiencies and energy requirements
 - Treated leachate is released to the environment
- Model is formulated so that user can specify release of untreated leachate to the environment

Questions?

Morton Barlaz barlaz@ncsu.edu

Jim Levis jwlevis@ncsu.edu

Additional Resources

- Brogaard, L. K., Riber, C., & Christensen, T. H. (2013). Quantifying capital goods for waste incineration. *Waste Management (New York, N.Y.)*, 33(6), 1390–6. doi:10.1016/j.wasman.2013.03.007
- Damgaard, A., Manfredi, S., Merrild, H., Stensøe, S., & Christensen, T. H. (2011). LCA and economic evaluation of landfill leachate and gas technologies. Waste Management, 31(7), 1532–1541. doi:10.1016/j.wasman.2011.02.027
- De la Cruz, F. B. and M. A. Barlaz, 2010, "Estimation of Waste Component Specific Landfill Decay Rates Using Laboratory-Scale Decomposition Data," Env. Sci. Technol., 44, 4722 - 28.
- Hodge, K. L., Levis, J. W., DeCarolis, J. F. and M. A. Barlaz, 2016, "Systematic Evaluation of Industrial, Commercial, and Institutional Food Waste Management Strategies in the U.S," Env. Sci. and Technol., 50, 16, p. 8444 - 52
- Levis, J. M. and M. A. Barlaz, 2011, "Is biodegradability a desirable attribute for discarded solid waste? Perspectives from a national landfill greenhouse gas inventory model," Environ. Sci. and Tech., 45, 13, p. 5470 76.
- Levis, J. W., & Barlaz, M. A. (2011). What Is the Most Environmentally Beneficial Way to Treat Commercial Food Waste?, *Environ Sci & Technol.*, **45**, 7438–7444.
- Levis, J. W., & Barlaz, M. A. (2014a). Landfill Gas Monte Carlo Model Documentation and Results http://epa.gov/epawaste/conserve/tools/warm/pdfs/lanfl_gas_mont_carlo_modl.pdf
- NC State University and Eastern Research Group, 2011, Background Information Document for Life-Cycle Inventory Landfill Process Model, EPA Contract No. EP-C-07-015
- Manfredi, S., & Christensen, T. H. (2009). Environmental assessment of solid waste landfilling technologies by means of LCA-modeling. Waste Management (New York, N.Y.), 29(1), 32–43. doi:10.1016/j.wasman.2008.02.021
- Wang, X., Nagpure, A. S., DeCarolis, J. F. and M. A. Barlaz, 2013, "Using Observed Data to Improve Estimated Methane Collection from Select U.S. Landfills," Environ. Sci. and Technol., 47, 7, p. 3251 7.

